EXAM GROUP THEORY, October 28th, 2019, 8:30am-11:30am, Aletta Jacobshal 01.

Put your name on every sheet of paper you hand in. Please provide complete arguments for each of your answers. The exam consists of 5 questions. You can score up to 7 points for each question, and you obtain 5 points for free.

In this way you will score in total between 5 and 40 points.

(1) Consider $\sigma = (1\ 2\ 3\ 4)(2\ 3\ 4\ 5)(3\ 4\ 5\ 6)] \in S_6$.

 \bigcirc [2 points.] Is σ an even permutation?

(a) [2 points.] Find the order of σ .

[3 points.] Compute $\sigma^{28102019}$. odd number

(2) Let n be a nonzero integer and suppose p is a prime number with the property $p|(2n)^4+1$. (a) [2 points.] Show that $2n \mod p$ is in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, and that it has order 8 in this group.

(b) [2 points.] Show that $p \equiv 1 \mod 8$.

 \bigcirc [3 points.] Show that there exist infinitely many prime numbers $\equiv 1 \mod 8$.

(3) Let $n \in \mathbb{Z}_{>0}$. In $S_{\mathbb{Z}/n\mathbb{Z}}$, the group consisting of all permutations of the set $\mathbb{Z}/n\mathbb{Z}$, we consider the subgroup G given by

 $G := \{ f_{a,b} \colon x \mapsto ax + b \mid a \in (\mathbb{Z}/n\mathbb{Z})^{\times}, \ b \in \mathbb{Z}/n\mathbb{Z} \}.$

In G we have the following two subgroups: $H = \{f_{a,0} \in G \mid a \in (\mathbb{Z}/n\mathbb{Z})^{\times}\}$, and $N = \{f_{1,b} \in G \mid b \in \mathbb{Z}/n\mathbb{Z}\}$.

(a) [3 points.] Explain why N is a subgroup of G, and why this subgroup is a normal subgroup.

(b) [2 points.] Show that HN (defined as the set of all products $f_{a,0} \circ f_{1,b}$) equals G. [2 points.] Show that $G/N \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

le o par - at prime

(4) This exercise discusses subgroups $H \subset \mathbb{Z}^2$. Let $a, b, c, d \in \mathbb{Z}$.

(a) [3 points.] Take $H := \mathbb{Z} \cdot (a, b) + \mathbb{Z} \cdot (c, d)$. Show:

 \mathbb{Z}^2/H can be generated by a single element $\Leftrightarrow \gcd(a,b,c,d) = 1$.

 \sim [2 points.] Take $H := \mathbb{Z} \cdot (2,2) + \mathbb{Z} \cdot (4,12)$. Compute the order of (1,0) + H in \mathbb{Z}^2/H .

[2 points.] Again, take $H := \mathbb{Z} \cdot (2,2) + \mathbb{Z} \cdot (4,12)$. Calculate the rank and the elementary divisors of \mathbb{Z}^2/H .

(5) Let G be a finite group, with #G=2m for some odd integer m. Suppose $g\in G$ is an element with $\operatorname{ord}(g)=2$.

(a) [2 points.] Explain why indeed such an element g exists in G.

(b) [2 points.] With S_G the group of all permutations of the set G, let $\lambda_g \in S_G$ be the permutation given by $\lambda_g(h) = gh$ (for any $h \in G$). Show that the sign of the permutation λ_g equals -1.

(c) [3 points.] Prove that G contains a subgroup of index 2.

[G:H]= #6 =2

GESa hogh